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Sensory Appcaratus Cast In Silicon
By VLSI Microchip Innovator

Carver Mead's Bottom-Up Analysis
Clears Path To Realtime Networks

. Bytackling the nervous systemfromthe groundup, this
microchip whiz is laying the foundation for the future.
From the sensory apparatus on up to the upper cortex,
Mead estimates it will take 10 years to decipher all the
layers between the eye, or ear, and the brain.

C ARVER MEAD IS VIRTUALLY THE
founder of very-large-scale inte-
gration techniques for digital
microchip production. As co-
inventor of the silicon compiler
— a software system for produc-
ing digital microchips directly
from high-level descriptions
rather than with manual lithogra-
phy — and the inventor of the
gallium-arsenide transistor, Mead
has already made a name that will
forever be remembered in annals
of electronic achievements.

The California Institute of Tech-
nology professor is not one to be
content resting on his laurels. His
newest “life's work” demonstrates
that fact. Mead has turned away
from the digital techniques he has
already perfected, toward analog
microchips based of the biologi-
cal metaphor. As chairman of
Synaptics Inc., a neural-network

microchip maker, Mead has
joined with the 4004 and Z-80
microprocessor innovator Feder-
ico Faggin who heads that effort..

Simulations Don’t Cut It

For Mead the rapid pace of
technological advancement has
produced distinct advantages for
those setting out to build systems
based on biological metaphors.
Because of advanced digital

semiconductor technology thathe.

largely created, there is an abun-
dance of computing power avail-
able to run neural network simu-
lations. But for Mead, simulations
will never stand-up to reality, and
it is “real data from the real world
that systems must ultimately
address.”

No matier how successful
digital computer simulations of
neural systems become, they will

never be able to deal with the
flood of real data in real time.
The main problem, according to
Mead, is the discrete nature of the
computer itself. Computers must
digitize data into discrete bundles
and file it away in memory, a
process that Mead contends strips
away the the realtime nature of
dynamic systems.

Because of the loss inherent in
the digitization process, the be-
havior of a computer simulations
cannot truly mirror the function-
ality of real biological systems.
For Mead, substituting simula-
tions for the real thing obscures
the fundamental issue of neural-
network dynamics beyond recog-
nition. And ultimately all mental
processes arise from dynamic
systems of neurons.

What we are aware of in daily
life is only a small part of what
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there is. “There is a vast neural
iceberg beneath the cognitive tip
of conscious thought,” Mead
explained. Consciousness arose
from an enormously complicated
system that operates according to
radically different rules than do
computers. And for Mead, what
makes a computer good at gen-
eral purpose computing is pre-
cisely what makes it poor at
imitating the brain.

. Even parallel processors with
thousands of nodes fail to make
even a reasonable approximation
to the brain, because they parcel
out tasks in the wrong size and
have little hope of achieving the
communication bandwidth that is
appropriate to simulating the
brain. The synapse is one of the
most complicated elements of
living neurons, but still it is just
too simple to be simulated by the
powerful algorithms available on
aparallel proccessor’s node.

According to Mead, computers
introduce a spurious dilemma as a
result of their computational
superiority. They make it neces-
sary to explicitly program the
tradeoffs between precision, time,
and resolution.

But natural systems use the
physical parameters of their
components to automatically
define those tradeoffs. For ex-
ample, neurons sum together
their inputs as result of Kirch-
hoff’s law. And other physical
parameters are sct by devices that
are exponential in nature, which

results in a wide dynamic range.
What the analog nature of
neural systems give away by
operating at lower precision, they
regain many fold by not aliasing
away real time events as do
digitizing computers. Their
continuous mapping of functions
into physical locations make the

“Thereis a
vast neural iceberg
beneath
the cognitive tip
of conscious thought.”

functions which are needed also
be nearby in physical location,
virtually eliminating the commu-
nication bottlenecks that plague
computer systems which use
global connections, such as a bus
or backplane.

The Answer — Microchips

The answer to the problems of
simulating neural systems with
digital hardware, according to
Mead, is to cast those analog
functions in discrete silicon tech-
nology. But this cannot be done
in one fell swoop, because there
are many levels of dynamic infor-
mation processing between
sensation and the high-level
cognitive functions of which we
are consciously aware. Many of
these Ievels are prewired at birth,
but many other sensory pathways
develop from the kind of objects

experienced throughout life,
especially during early develop-
ment.

‘When an animal is born, a
“blooming, buzzing confusion” of
data, in William James words,
assaults the senses. Evolution has
come up with ways to organize
that data, but these systems took a
long time to develop and pro-
ceeded from the simple to the
complex. But many system
developers ignore the basic fact
that evolution proceeded from the
bottom up, by attempting to build
systems from the top down. The
problem, according to Mead is
that “no one knows where the top
is.” Neurologists have acquired
some knowledge about the way
sensory organs represent informa-
tion from the bottom up. But the
higher levels that are the domain
of psychology have almost no
connection with our knowledge
about these underlying opera-
tions. Some of the major path-
ways have been mapped out and
some of the grosser aspects of
information transformations are
the subject of speculation, but
science is a long way from under-
standing the brain from the top
down.

Traditional artificial intelligence
(AI) used this top-down approach
only to fall into a trap. “The trap
was set by grossly underestimat-
ing the amount of information
processing between the bottom
and the top.” The correct way to
proceed, if one desires to imitate



the brain, is to start at the bottom
by building something that can
interpret real sensory data. It is
easy to build an image recogni-
tion system that recognizes what
the researchers expected it to see
in the first place. But it is ex-
tremely difficult to expose a
system to real sensory data and
then discover what it is seeing.

The Al Trap:

“You announce that you are
going to do a really hard problem,
then you start working on it and
discover that it is orders of
magnitude harder than you ever
imagined. So you do what every
good scientist does, you make up
a toy example, something that
you think you can solve. The
principle is to keep simplifying
the problem until it goes away...
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So you solve your simplified
version, and then make a little
demo of that. You can make it
look really good, because we
have all these powerful comput-
ers around that can do wonderful
simulations. You then announce
to the press that you have solved
the problem. But you have to be
careful not to reveal what the
really hard parts were. And when
you look at them, you can’t
believe that they are really that
hard, and you feel really stupid.
Then you go back to step one of
an even more difficult problem.”
Mead is afraid that the neural-
network field is going to succumb
to the same trap and “that is the
fastest way for a budding field
with a lot of promise and interdis-
ciplinary interaction to go under.”
The way to avoid the Al Trap is
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The senses shape the character of cognition iself by converting raw sensation into
aninternal representation that can be called upon torecognize similar Instances.

to make getting real data the
number one priority. A good start
in this direction was made in
1952 when Egon Léebner, then at
RCA, built an artificial retina that
worked from real data. Its only
major problem was size. Because
it had to use non-solid-state
technology it was housed in a
module four feet by four feet by
three feet. It was a wonderful
technological start, according to
Mead, but the implementation
was just too cumbersome.

But with the advent of the inte-
grated circuits all that has
changed. Even with current
technologies there is room for yet
another factor of 100 in speed en-
hancement and size reduction
before the limits of the physical
devices must be circumvented
with new technologies.

Just as nature evolved a system
to handle sensory data in real
time, the neural network industry,
according to Mead, is also evolv-
ing a technology. The constraints
of the technologies being used
will set the parameters of the
tradeoffs between precision, time
and resolution, as do living
systems. By learning that lesson
from biology, analog technologies
can be evolved along similar
lines. By studying the constraints
of biological systems, its func-
tions can be cast in microchip
technology.

Technical Evolution

One of the major constraints
used by so-called “wetware” are
its constraints on local wiring
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schemes. The complexity of cir-
cuits, whether they are cast in
silicon or in the wetware of the
brain, depends upon a close
match to wiring. Just as there is
not enough information in DNA
to specify the multitude of con-
nections in the brain, there are not
enough programmers in the world
to explicitly specify all wiring
topologies needed for neural
networks.

The nervous system uses a
wiring geometry that is slightly
greater than two-dimensional,
since opening up all the folds and
creases in the cortex results in
just a square meter of area that is
about one millimeter thick.
Silicon technologies already have
a similar slightly greater than
two-dimensional constraint, But
because both systems are basi-
cally two-dimensional, the major
problem is also the same —
namely the cost of its wiring.
Highly local wiring schemes in
the brain must be copied by
silicon versions. That means that
processing must take place within
a context that is mapped locally,
just as in the nervous system.

Bad News & Good News

According to Mead “the bad
news” is that designers are going
to have to consider the constraints
of their medium in a way that
they have only vaguely consid-
ered up to now, particularly with
respect to the locality issue.
Systems that learn from experi-
ence must have an underlying

structure that enables that learn-
ing to take place. Genetic codes
perform that function in wetware,
but wiring and the architecture on
which a problem set is mapped,
does it in hardware.

Systems must also be self ad-
justing, “normalization is the first
order of business,” both for

Designers must consider
the constraints
of their medium
in a way only
vaguely considered
up to now.

voltage levels and for gain. Every
part of the nervous system is self
adjusting, according to Mead, in
order that it might accept a wide
dynamic range of inputs. The
other major characteristic of the
nervous system is its ability to
perform time-domain processing
without a global system clock.

So much for the bad news. “The
good news is that the result will
be worth the effort.”

Today chips can be built with
about 10%thsynapses on a wafer
and soon as many as 10*%th will
be feasible. Other niceties are that
the analog device's processing
primitives are well suited to
neural information processing,
such as exponential and hyper-
bolic functions — just the func-
tions that are difficult for digital
technology. The analog represen-

tation is not as precise as digital,
but it can handle current and time
resolutions of over seven orders
of magnitude. Additionally,
wafer-scale integration is easier
with analog design, because of its
low power consumption, a result
of operating devices below their
threshold voltage. An artificial
retina, for instance, consumes
power down in the microwatt
range, since the technology is
inherently current limited. Also
connections can be easily time
multiplexed, like television
bands. Optical devices like photo-
detectors are also easy to built
into silicon.

But the good news may be
“hard to swallow” because
designers will have to go back to
developing a technology from the
ground up. It is easier to just
simulate neural systems with
highly developed digital tech-
nologies. But the electronics
community is resilient. It is also
chocked full of people who
hunger for new ideas to start
wiring up. As aresult, “I believe
that ten years from now, there are
going to be a whole lot of neural
networks in analog silicon.”

First Cognizer Chip

Meads first excursion into
analog silicon was to improve
upon a colleague’s circuitry at
CalTech, John Hopfield’s associa-
tive memory. He fabricated his
associative-memory chip based
on Hopfield’s theory, but he used
several clever analog design



techniques to improve upon it.
With his intricate understanding
of processing technology, Mead
was able to represent the trickier
aspects of the Hopfield’s neuron
model with standard fabrication
techniques.

Mead’s (addition) to the archi-
tecture borrowed from Hopfield
was to use alterable connections
to his artificial neurons, so that
the device was programmable
rather than fixed in function like a
read-only memory (ROM.)
Hopfield’s microchips had to be
programmed once-and-for-all
with masked resistors. The pro-
grammability problem was tricky,
because the system had to be able
to represent both the positive and
negative resistances that represent
excitatory and inhibitory connec-
tions found on real neurons.
Positive resistances are difficult
enough to build in silicon, but
negative resistances are impos-
sible to build. Mead’s insight was
to use a dual-rail voltage tech-
nique to represent this problem
elegantly. He used the constraints
of the medium to an advantage
instead of using brute-force
techniques to surmount the
problem, as is common for digital
designers.

Mead and his students at Cal-
Tech built a programmable
associative memory consisting of
22 artificial neurons with 462
connections. The circuit was
fabricated in 1984 by the MOSIS
service, run by the Defense Ad-
vance Research Projects Agency
(DARPA). It used an standard

Neural

silicon process with relatively
relaxed four-micron minimum
design features. Amplifiers were
used to model the neurons and
were placed along the diagonal of
a22-by-22 cell array.

Unlike Hopfield’s chips, Mead’s
implementation was fully pro-
grammable for different purposes.
Mead’s chip was necessarily
more complicated, though, since
each cell needed over 40 transis-
tors plus a double set of wires for
the dual-rail supply voltages. The
chips exhibited the remarkable
“fail-soft” property characteristic
of brains. Though brain cells die
every minute, one’s conscious
mind is not effected in the slight-
est. Similarly Mead’s chips con-

Network Almanac — Features — Mead 67

tinued to store two 22-bit vectors
and remember them by associa-
tion even with component failure
rates of over fifty percent.

Silicon Eyes And Ears

But Mead’s first excursion into
neural networks, with his associa-
tive memory chip, was just to get
his feet wet. Since then his com-
mitment to building systems from
the bottom up has turned his
interests to building silicon ver-
sions of human sensory appara-
tus. The senses are the first step
in a hierarchy of information
processing that stretches from the
outer periphery of the body up to
the highest level of the cerebral
cortex. While most other neural
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Mead's earliest attempt at cratting neural networks from analog silicon wafers
was aprogrammable verslon of professor John Hopfield's associative memory.
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network researchers are starting
at the cortex, Mead is starting
with the senses — silicon senses.

For Mead, the most amazing
thing about the nervous system is
its ability to cope with the
“pblooming, buzzing confusion” of
sensory information that would
swamp any known digital system.
“There is no time to swap data
out to disk,” Mead mused, “the
nervous system simply always
processes information at an
enormous rate.”

To learn how that system works,
Mead is building sensors that
work in real time and which
employ the principles used by the
human visual and the auditory
systems. He claims that his
systems are not as good as the
systems in real animals, but that
the very act of building them is
revealing how neural systems
work in real time.

The most
important

Mead used “bugs,”usually avolded par-
asilic translistors, to act as photodetectors.
Thelr small size enables many more to be
fabricated on asingle microchip.

thing that is being revealed is
how information is represented in
the body. “When it is done, the
entire neural network business is
going to be a business about rep-
resentations, make no mistake
about it,” Mead contends. He
maintains that this simple fact has
been true of computer science
since its beginning, that is, the
proper data structure is half the
job. He claims that it is just as
true of the nervous system. “Get-
ting the representations right is
what is going to make the busi-
ness fly or die.”

The reason that one must start
from the bottom, is that the
bottom is where the necessary
invariants get built into the
internal representation of infor-
mation. And achieving the proper
representation will allow systems
to recognize the objects of vision
or speech as people do. For
speech, the proper invariants will
allow recognition systems to be
built “without having to do all the
crazy stuff we to do today to get
it all tweaked up for the particular
speaker and so forth.”

Mead has pledged his next ten
years of research to getting the
representation right so that those
who are building object recogni-
tion systems will have a represen-
tation on which recognition will
be worth doing.

The Visual System

Carver Mead’s first attempt at
building silicon senses was to
model the human eye. The human
retina uses an array of neurons

lining back of the eye to extract
features and condense a vast
amount of raw sensory data. By
studying the real retina, Mead and
graduate student M.A, Mahowald
were able to mimic its operation
with a photo-detection microchip
that possessed built-in invariants
similar to those of the biological
eye. A tiny photo detector array
that was sensitive to motion, an
invariant built into the human
retina, was used to recognize a
moving object directly without
any computerized image process-
ing. That operation would have
required a supercomputer to
compute directly from a dumb
sensor like a television camera.

By modeling the basic opera-
tions of the eye, Mead’s micro-
chip combined both sensing and
image processing onto a single
6mm by 8mm microchip. The
silicon device held 2304 photo-
sensitive receptors together with
their associated processing
elements, each of which meas-
ured only 100 microns by 125 mi-
crons. The circuit was built
entirely from transistors.

A feedback loop using com-
petitive shunting networks
damped the response of the
photo-detector so that the micro-
chip did not respond to absolute
light intensities, but to ratios of
available light. The main detec-
tion system registered the rate
that the intensity of light changed,
in effect deriving the derivative
of the light intensity in its neigh-



borhood.

In contrast, conventional image
processing takes snapshots of
visual scenes at discrete time
intervals and then attempts to
correlate points among these
frames in order to discover the
boundaries of objects and their
movements. That operation takes
a supercompter to handle the ex-
tremely complex mathematical
correlations required. Mead
showed that the eye is not doing
correlations at all, rather it
handles light variations as a con-
tinuous stream.

Mead used the tiny delays
among his feedback loops to
provide the time it takes to derive
arate of change in the intensity at
the point of detection. Thus rather
than perform complex correlation
calculations, the eye senses
motiondirectly.,

The digitization of visual
images by computers is, for
Mead, the largest obstacle to their
success at recognizing objects.
Rather than discrete sequences of
time steps, his microchips use
chains of dynamic timing loops to
set the parameters of precision,
time and resolution so that the
proper invariants make the recog-
nition process easy.

Mead used bipolar parasitic
transistors that are usually
avoided in standard microchip
processing for his photo-detec-
tors. When photons struck the
surface of his microchip they ab-
sorbed it to produce an electron-
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hole pair. That generated a cur-
rent which was amplified by the
operation of the transistors. This
effect, usually unwanted by
microchip fabricators, was used
by Mead to produce his very
effective photodetector array.
The output of this parasitic
detector was then passed through

The entire
neural network _
business is going to be
about representations,
make no mistake
about it.

two transistors and fed back into
the device’s input just as in the
peripheral vision neurons of the
retina. That feedback attuned the
detector to motion. By replicating
that simple circuit over the
surface of the chip an exceed-
ingly small sensor was formed
that could readily detect the
movement of images focused on
the surface of the chip. The
circuit also could distinguish
foreground objects from back-
ground objects a feat that has
been difficult for digital comput-
ers.

Having built the first level of
his retina, Mead is moving on to
model the next layer of the retina
— the amicrine layer. Amicrine
cells are inter-neurons, passive
cells with an underlying layer of
variable resistance connections.

The function of this layer, accord-
ing to Mead, is to add temporal
enhancement to the spatial de-
rivative of the first layer. This
second processing step will
enhance the region around a point
where movement is detected.
Each photocell’s response will
modify the response of its neigh-
bors in the array through a simu-
lated amicrine layer. The two
layers operating in concert will
locate the median of the overall
signal intensity allowing the
system to scale its response to the
average level of input.

The amicrine system solves a
difficult problem for any sensory
system by scaling its response.
Any signal processing system can
be adversely affected if the
median of the input signal is close
to its upper or lower bounds.

But two obstacles stand in the
way of modeling the amicrine
layer with analog microchip
technology. First the amicrine
level is highly interconnected
requiring an astronomical level of
wiring density. Secondly it
requires variable resistances.
Mead has built variable resis-
tances into his associative mem-
ory using a dual-rail voltage
approach, but that took 40 transis-
tors for a single connection. A
more economical solution than
that was needed.

To solve the wiring problem for
the amicrine layer Mead has
worked out a novel hexagonal
wiring layout. Mead derived
aspects of his approach from
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Carver Mead makes every attempt to accurately portray blological systems In the clreulls he fabricates.
The blological “amicrine” cells of the eye, (top,) compare closely to his sliicon version, (bottom.)
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This artist's conception of Mead's wiring topology tor the amicrine layer of neurons in the eye Is actually quite close
tothe real chip. At Synaptlcs Inc., where Mead Is chalrman, several similar microchlps are belng developed.



seminal work done by Boston
University’s Stephen Grossberg.
(See related story page 33.)

The Auditory System

Mead’s second foray into
sensory apparatus was to synthe-
size a silicon “ear.” To do so,
Mead went back to the anatomy
books. His first discovery was
that the auditory system evolved
before there were speaking
animals. Thus the auditory sys-
tem could not have been designed
to understand speech, rather it
was “engineered” to localize and
identify sounds. Mead discovered
that an abundant amount of
auditory research revealed several
accepted facts regarding what the
-auditory system does to localize
sounds, but an understanding of
how it does it was yet to come.

Nevertheless, the mechanisms
appeared to be well understood.
Sounds appear to be localized
separately in the horizontal and
vertical planes. The most well
known mechanism for how
sounds are localized, according to
Mead, is horizontally. In the
horizontal plane localization is
done with stereo cues from
transients that come to one ear
before the other, known as the
interaural time-delay cue. The
distance between the two ears
horizontally yields a time delay
of about 700 microseconds.

(1

Another less well known, but
equally important cue for hori-
zontal localization, comes from
the fact that the ear aimed toward
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a sound gets more high frequen-
cies than the one facing away
from the sound. This is called the
head-shadow cue. The head-
shadow cue is a very powerful
mechanism, often being as strong
as the interaural time-delay cue.
The interaural time-delay cue and
the head-shadow cue together

The auditory system
could not have been
designed
to understand speech,
rather it was
“engineered”
to localize
and identify sounds.

yield localization in the horizon-
tal plane.
(4

Vertical localization of sound is
more difficult, but comes about
because there are two paths into
the ear canal, one that goes
directly to the ear drum and one
that deflects sound off the lobes
of the outer ear as it enters. The
delay due to the deflected path
depends upon the vertical angle
from which the sound come. But
the time delay cue for vertical is
only about 70 microseconds,
making it a weaker, but still a
clearly perceptible, cue.

ModelingtheEar

In order to duplicate this local-
ization machinery in silicon,
Mead has built several chips

based on a detailed analysis of the
ear’s structural dynamics.

The transduction between the
sound waves that come into the
head and the electrical impulses
that feed the brain occurs in the
cochlea, a snail-shaped structure
which is filled with fluid. It is
divided into three chambers by
membranes, the most important
of which is called the basilar
membrane. The fluid is incom-
pressible so that pressure on one
side of the membrane displaces
the fluid and therefore the surface
of the membrane.

The basilar membrane divides
the cochlea along its length, Fluid
goes down the length of the coch-
lea to its end where it is open to
return along the other side. The
springyness of the basilar mem-
brane together with the mass of
the fluid makes a traveling wave
structure down which signals can
propagate like an electronic delay
line.

The stiffness of the basilar
membrane is the key to its func-
tionality. Its stiffness decreases by
about two orders of magnitude
over its length of about 3 or 4 cm.
The velocity of propagation,
which is inversely proportional to
the mass and density of fluid and
directly proportional to the stiff-
ness of the membrane, also
decreases along its length.

If one drives the membrane
with a sine wave, a pressure
difference is set up between each
side of the membrane and that
starts a traveling wave down its
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Iength. The wave travels very
rapidly at the beginning and then
slows down due to the decreasing
stiffness of the membrane.

An inevitable part of slowing
down is that the energy per unit
time is constant, but the energy
density per unit distance gets
larger. To compensate, the ampli-
tude of the wave grows as the
wavelength gets shorter. The
membrane is very close to loss-
less until the waveform gets very
short, at which point the second
order properties of the membrane
damp it out. That shearing loss in
the membrane rolls off the high
frequencies very rapidly.

By studying the membrane
itself, Auditory researchers had
found that the law by which the
stiffness varies is exponentially
decreasing with distance. That
causes an exponential decrease in
the velocity of the wave account-
ing for the subjective perception
of sound as logarithmic. That is,
if the frequency of a wave is a
multiple of the original, then

é )
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A pole plot of the electronic delay line
shows how It simulales the exponential
changeinthickness ofthe ear'smembrane,
(both axis are log scales.)

exactly the same wave is formed,
it is just shifted over to the right
or left. Mead contends that this is
the very first step in a piece of
representation that is taken for
granted, the octave relationship.

According to Mead’s analysis,
hearing has a frequency invari-
ance built into it. Harmonic
frequencies are due to the very
characteristics of the cochlea’s
factor-change in frequency which
corresponds to a constant shift in
position. The spatial pattern on
the membrane for waves that are
twice as fast are identical, just
shifted over. If it is doubled
again, then that wave is also
identical, just moved over again
by the same amount. Thus the
octave relationship, that piece of
invariance, is built into the aural
representation at the very lowest
level of mechanical transduction
in the hearing system.

Basilar Membrane Details

After the sound pressure from
the outside world is transformed
into a traveling wave along the
basilar membrane, four rows of
hair cells above the fluid-filled
cochlea sense the rate at which
the membrane vibrates. The tips
of these hair cells which are
called cilia, move as small as an
angstrom to change the firing rate
of the neural cells to which they
are attached. These neural cells
then feed the auditory nerve,
which goes up to the brain. If
these hairs are ever dislodged, by
loud noises (such as gunshots or

shrill guitar solos,) they do not
grow back.

The outer three rows of these
hair cells are fastened in a station-
ary position above the membrane
to exert a force on it like a
muscle. As the membrane rocks
back and forth, the mechanical
motion stimulates the force
transduction mechanism of those
cilia to apply a force back onto
the membrane in such a direction
that it lowers the mechanical
damping of the system. Itis a
negative mechanical resistance,
(positive feedback.)

There are enough hair cells that
the mechanism can become so
active as to cause a spontaneous
mechanical oscillation (ringing in
the ear) such as when one
stretches in the morning,

This active undamping system,
from an engineering point of
view, demonstrates that the ear is
set up to hear transients. Accord-
ing to Mead, the ear is not set up
like a series of band-pass filters,
as nearly every other engineering
model suggests. If it was, then
whenever a transient came along
it would set the bandpass filters
ringing and the information in the
transients would be lost. Accord-
ing to Mead, that is not what the
cochlea is doing, rather the
cochlea creates a traveling wave
structure that preserves the
transient nature of sound.

‘When the sound level is very
low, the system prefers to go
“boing,” as Mead puts it, rather



than not hear a sound at all.
Consequently, at very low sound
levels there is no feedback to turn
down the gain and the basilar
membrane becomes very reso-
nant. The bottom two orders of
magnitude of hearing are domi-
nated by this very resonant be-
havior where the ear is not as
good at hearing transients, but it
is extremely good at hearing
sound. Because the bandwidth
gets increasingly narrow, the
noise does not go up as fast as the
gain does, making it a very effec-
tive way of increasing the signal-
to-noise ratio at very low sound
levels.

The mechanical undamping is
controlled by efferent fibers com-
ing down from the brain to the
cochlea. The efferent fibers are a
very complex and sophisticated
feedback system that can turn
down the mechanical gain of the
outer hair cells. When there is
lots of sound information coming
in, the automatic-gain signals are
cognized in the olivary complex
and feedback signals, which are
very slow compared to the audi-
tory signal, are sent back to turn
down the gain.

The compressive nonlinearity in
the transduction mechanism of
the inner hair cells is approxi-
mately a square-root function.
There are two different kinds of
compressive nonlinearities in the
automatic-gain control as well as
some others further up that are
not as well understood, Mead
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contends.

The frequency response of the
basilar membrane over most of its
working range is quite smooth
and is not at all resonant without
the undampening at very low
sound levels. However, it does
have a very very sharp cut off at
high frequencies and slow roll-off
on the low end.

(3

Since the velocity of propaga-
tion is fast at the beginning and
slow at the end, the poles of the
filters are exponentially sepa-
rated, starting with very high
frequencies being very fast with
the velocity of propagation then
going down.

Chips Like The Ear

The chips to emulate these
functions of the ear were built in
conjunction with Richard F.
Lyon of Schlumberger Labs. The
first to be built was a traveling-
wave structure that is a silicon
analog of the cochlea. A transmis-

sion line was made out of tran-
sconductance amplifiers that
output a current which is propor-
tional to the voltage at their
inputs.

Each delay element used two
capacitors as the dynamic compo-
nents, being charged by two am-
plifiers going forward and one
going backward. The one going
backward provided the positive
feedback corresponding to the
action of an outer hair cell by
decreasing the damping of the
traveling wave structure. The
positive feedback was about half
enough to make the system
oscillate.

All the circuits were cast in
metal-oxide semiconductor,
(MOS,) and operated in the
subthreshold range which means
that the currents through the
transistors was exponential rela-
tive to the voltage on their gates.
In that region, Mead maintains
that MOS transistors are perfectly
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well behaved.

Because the current through the
transistors was exponential with
respect to the voltage on their
gates, the transconductance of the
amplifier was exponential with
respect to the control voltage that
sets the gain and therefore the
transconductance of the amplifier.
Accordingly the velocity of
propagation was exponential in
the voltage on the control input.

To harness that exponential char-
acteristic in the service of simulat-
ing the cochlea, Mead laid down a
resistive polysilicon line along the
length of the delay line and put a
voltage on one end that was lower
than the voltage on the other end.
That produced a linear gradient on
the control voltage terminals of the
amplifiers which was converted by
the MOS transistors into an expo-
nential gradient in the velocity of
propagation of the signals down
theline. This silicon “trick” models
perfectly the exponential decrease
in stiffness along the basilar mem-

ogy overordersof magnitude. With
coils or capacitors that have to get
bigger and bigger, three orders of
magnitude would take a room full
of stuff,” Mead explained.

In terms of frequency response
plots, the curve for each section
of the delay line is only very
slightly resonant and extremely
broad. But there are lots of them,
just like their are lots of hair cells,
and they are spaced very closely.
But to get the total response one
must add up the response of all
the curves. Though each curve
has only a very slight bump when
they are added up a very large
gainresults. And as one changes
the height of the bump on each
section a very small amount, the
height of the composite changes a
lot. “That is the same trick that
the real cochlea is doing,” Mead
explained.

The membrane itself is not un-
damped very much, but because
the signal propagates through a
lot of sections each one of which

is only very slightly resonant, the
result is a big increase in gain for
a very small amount of positive
feedback (that is the trick). There
is more than a factor of 10 change
in gain in the overall system due
to that very small change in the
resonant peak in each individual
section.

Another result of using all those
sections is that the high-fre-
quency roll-off gets extremely
steep, up to 200 db per octave.
That piece of the hearing
system’s representation makes
extremely good use of the fact
that the amplitude of a given
cochlea channel falls very rapidly
with frequency. Namely, it ex-
plains how vibrato works on a
stringed instruments: an imper-
ceptible change in frequency is
actually perceived as a change in
amplitude, because that small
change in frequency runs up and
down the extremely steep curve
of one part of the cochlea. Be-
cause the cochlea channels have

brane. such a very
Thus Mead r A sharp increase
built a transmis- and decrease in
sion line whose Delay-Line Unit Ao amplitude, as
velocity of prop- FIGE Positve Feadback one rocks their
agation varied Transconductance finger a little bit
over several or- pflers on the violin,
ders of magni- the impercep-
tude along the | o tible change in
lengthof theline from s frequency is
that was never- o interpreted as a
theless perfectly Vo oV change in ampli-
well behaved. s Resistive Polyslicon Uine Delivers Linear Voltage Gradient To Gain inputs s tude — what
“Thatis hard to {_ - ) musicians call
do with tradi-  peqdpulledanothersilicon rick out ofhehatwhenhe putalinearvoltagegradient  Vibrato. There
tional technol- onthe exponential control Inputs to simulate the “log” characteristics of the ear. are also other



perceptual artifacts that come
from the fact that the cochlea is
using this very very rapid roll off
infrequency.

‘What Mead’s detailed analysis
of the cochlea makes clear, is that
good frequency discrimination is
not dependent upon narrow
peaks, (bandpass filters), rather it
depends on mechanisms with a
very sharp roll-off. That is pre-
cisely what the auditory system
uses.

On the chip Mead built, there
are 20 sections per octave in fre-
quency, each of which is about a
third of an octave wide in its
response. The peaks are broad so
that there is considerable overlap
among the delay elements. The
difference in voltage at each end
of the polysilicon line feeding the
gain inputs of the transconduc-
tance amplifiers determines the
peak frequencies over the range
of the artificial cochlea. Two
capacitors per unit provide the
time delay for each of 480 delay
sections. The DC gain in each
seciton is slightly less than one.

Right Side Of The Law

Each MOS amplifier on Mead’s
chip has a gain of about 2000, but
unfortunately the MOS fabrica-
tion line used had variations of up
to 2X among transistors that were
supposed to be identical. Never-
theless, this case is on the “right
side of the law of large numbers,”
Mead said. It is possible to be on
the wrong side of the law of large
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numbers too, Mead elaborated.
Being on the wrong side means
that if any one thing will mess it
up, you are bound to have one
wrong. “But in this case it all
averaged out better than it had
any right to...it must be that the
things that have survived in the
nervous system were also on the

Luckily we were
on the right side
of the law
of large numbers

right side of the law of large
numbers.”

Mead is ambivalent over
whether nerve pulse trains or
simple signal levels should be
used as the representation for
neural network information
processing. To resolve those
mixed feelings Mead set out to
learn about neural pulse trains by
actually building a synthetic hair
cell. “That has turned out to be
orders of magnitude more diffi-
cult than making the cochlea
itself,” Mead revealed.

In his preliminary studies, Mead
concluded that real hair cells
preserve “time synchrony” very
well. In other words, hair cells
fire in synchrony with the signal
coming in “a little before top-
dead-center, just like a good
internal combustion engine.” But
unlike an engine, hair cells do not

fire on every cycle. Graduate
student John Lazzaro and Mead
set out to model that action by
building synthetic hair cells on
silicon microchips

Their primary objective was to
model the characteristics of the
auditory system that seemed to
depend on the timing of the
arrival of sound. “The nerve
signals are digital in amplitude,
but not digital in time...the time
of arrival is the critical part of the
representation,” Mead elucidated.

Also for different amplitudes of
input voltage, the hair cells ap-
peared to skip more cycles for
low voltages than for high ones.
Hair cells also tended to saturate
out while nearly always maintain-
ing synchrony with the input
waveform.

To model all those actions,
Mead chose a silicon hair cell
built with a differentiator driving
a capacitor and using the current
that goes into the capacitor to fire
a neuron circuit with a threshold.
Each time the signal exceeded the
threshold it fired the neuron in
synchrony with the input wave-
form. But because the current that
went into the capacitor was the
derivative of the waveform,
whether it fired on any given
cycle was stochastic, (random,)
because it could not be known
ahead of time how close the
neuron was to its firing threshold.

The firing rate, as a function of
the frequency, was found to
mirror the original mechanics of
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the cochlea — that is, the peak
got sharpened because the circuit
was taking the derivative. Over
most of its operating range, the

- cochlea is not particularly reso-
nant, but after taking the deriva-
tive it appears that way because
the traveling-wave structure is
feeding a differentiator,

Between Cochleaand Cortex

The auditory representation is a
very old system. “Back when we
were lizards, we didn’t have a
cortex and visual processing was
done in the superior colliculi,”
Mead explains. Birds, in fact,
still use that system. The lower
parts of the systems between us
and birds look the same. “This is
an amazing case of convergent
evolution,” since similar cochlea
were evolved independently in
totally separate species.

From the cochlea, neural signals
go to three different places in the
cochlea nucleus, each of which
have radically different anato-
mies. The output fibers from
those locations in tun go to yet
other places. The next stop after
that is the olivary complex from
which the automatic-gain control
signals return down the olivo-
cochlear bundle and back to the
cochlea to turn down the gain on
the outer hair cells. Then fibers
go up to the inferior colliculi both
from the olivary complex and the
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top end of the colchlea nucleus.
Then, surprisingly there are some
fibers that go up to the superior
coliculus which was traditionally
thought to be a visual area. About
5% of the nerves in the superior
colliculi are auditory. Therefore,
“there must be some explicit co-
ordination between eye and ear,"

It will take 10 years
to map out the
information processing
steps between the ear

and the coriex.

since when the eyes move the
auditory map in the brain shifts
around to keep it in sync with the
visual scene. That must mean that
itis extremely important that the
representations of the spatial map
be in registry with both visual and
auditory signals. The outputs of
the colliculi go up to the genicu-
lar body and on up to the cortex.
The point of enumerating all
these levels of information proc-
essing is that speech understand-
ing is done way up in the cortex,
but the cochlea is setting up the
representation way down below.
Hence, systems that concentrate
on the cortex, like most tradi-
tional neural networks, are bound

to get the representation wrong.

“It is a long way between the
cochlea and the cortex. When we
have learned all these stages of
processing, then we will have
enough information about the
representations that we will have
something worth doing speech
recognition on,” Mead contends.
But there are a lot of stages yet to
be explored and mapped out.

In contrast, the visual system
was once totally confined to
lower areas, but now it has
moved almost exclusively up to
the cortex, but the auditory
system did not do that, “that tells
us something very important...
whatever the system did to be so
very good at localization and
identification of sound is the right
front end for a speech under-
standing system, because it has
persisted so long.” For Mead that
is why one must understand all
the stages of processing so that
the appropriate representation
with the right number of invari-
ants are built in from the start, “so
that we don’t have to train our
speech understanding systems on
every individual person and have
the words isolated and all the
other crazy stuff we have to do
today,” Mead predicts that it will
take 10 years to map out all
the information processing
steps between the ear and the
cortex.
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June 12, 1989

Carver Mead

CalTech

MS 2567-80

Pasadena, Calif. 21125

Dear Carver,

It was nice talking with you in Portland. Hope you enjoyed your stay af your ranch, We
love Oregon too. (Lisa sends her regards.)

| wrote a story from your iecture at the Portland IEEE Circuits and Systems conference for
EE Times and mentioned your new book (Incidentally, Analog VLSI and Neural Systems, is
now on the top of my recommended list of books for serious neural enthusiasts. Good
Jobh

I am currently updating the Neural Nefwork Aimanac for the 1990 edition. The feature
story on your work will be updated and a listing of Analog VLS and Neural Systems will be
added. | will be sending you the updated text sometime this fall for your approval.

In the meantime, | would like to ask if you could help us with the 1989 Aimanac by giving
us a comment on your story in it. For instance, John Hopfield has written for us about his
story:

"I am somewhat astonished! The writer has focused on the deepest of issues and has
ignored the surface glitz.” John Hopfield, Aug. 3 1988.

Enclosed is the story from the 1989 Neural Network Almanac on which you are
commenting, a sheet on which to write your comment and ¢ self-addressed stamped
envelope.

Thanks again and remember, the 1989 story enclosed is only for your convenience
when writing your comments. This fall you will be given the opportunity to edit your 1990
Neural Network story and write new comments,

R. Colin Johnson
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Enclosed is the text from a story about you as it
appears in the 1989 Neural Network Almanac.

Please take the time to write a comment about your
story that might help us spread the word.

Example comment: “The author has focused on the deepest of issues...” John Hopfield
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